Desiccant Dryers

Heatless | Heated Purge | Blower Purge | Modular
Desiccant Air Dryers

- Quincy desiccant air dryers purify compressed air by adsorbing water vapor.
- Pressure dewpoints of -40°F to -100°F are attained by directing the flow of wet compressed air through a bed of highly adsorbent Q-Sorb desiccant.
- “Q-Sorb” is an enhanced formula of activated alumina. It provides better uniformity, more efficient use of available surface area, less dusting, longer life and lower pressure drop.
- Heatless dryers use a small portion of the dried compressed air to purge the off-line tower.
- Heated Purge dryers use an even smaller portion of the dried compressed air combined with heat for regeneration.
- Blower Purge dryers combine heat with forced ambient air for regeneration.
- Optimum performance and energy efficiency are maintained by employing a selected integration of dedicated valves, unit specific electronic controls, monitoring devices, and demand controls.
- 5 Year Warranty on all actuated switching valves.

Flow Schematics

- To regenerate the off-line tower, atmospheric dry purge air flows through the regenerating bed.
- Purge air dries the moisture laden desiccant beads and is expelled to the atmosphere through the mufflers.
- Moisture load, velocity, contact time and cycle time determine the amount of desiccant required, and the size of the vessels.
- To ensure optimum moisture adsorption, velocities are kept below 50 feet per minute. The air is in contact with the desiccant for at least 4.5 seconds ensuring performance, while keeping a low pressure drop.

QHD Heatless
-40°F to -100°F Dewpoint
First Cost: Low
Operating Cost: Medium to High
Maintenance: Low
Purge: 15%

QHP Heated Purge
-40°F to -100°F Dewpoint
First Cost: Medium
Operating Cost: Low
Maintenance: Low
Purge: 7%
w/MBR Option: 3.5% Avg.

QBP Blower Purge
+10°F to -40°F Dewpoint
First Cost: High
Operating Cost: Low
Maintenance: Medium
Purge: 1.75% Avg.
The New Heatless and Blower Purge Low Flow Dryers
(QHD/QPB 210-635)

Features
- Quality desiccant delivers consistent performance even in the harshest of conditions
- Stainless steel butterfly valves with actuators ensure a long lifetime
- Standard filter package complete with two pre filters and an after filter
- NPT connections allow easy installation and service access
- Forklift slots on frame for easy handling
- Wide vessels allow low air speeds and longer contact times
- Galvanized piping with flanged connections simplifies maintenance and reduces the risk of leaks

Performance
- Class 1.2.1 standard (-40°F @ 100 PSI)
- Class 1.1.1 option (-100°F @ 100PSI)
- Max pressures
 - QBP - 210 PSI
 - QHD - 160 or 232 PSI
- Low delta P - < 3 PSI
- ASME approved
- Low purge loss with QBP

Electronics
- Voltage
 - QBP - 460/3/60 or 575/3/60
 - QHD - 115/1/60 or 230/1/60
- Advanced control and monitoring system
- NEMA 4 controller
- Dewpoint dependent switching
- Dewpoint alarm
- Hygrometer for dewpoint monitoring
System Packages

Quincy offers several factory filter packages that optimize filter selection and component placement. These factory mounted high-performance prefilters and afterfilters ensure total system integrity and reduce installation costs.

QHD/QHP/QBP 850 & Up (Optional)

Package 1

- Prefilter
- Dryer
- Afterfilter

Package 2

- Prefilter
- Dryer
- Afterfilter

Package 3

- Dual Selectable Prefilters
- Dryer
- Dual Selectable Afterfilters

Includes Dryer with Mounted Filters and 3 Valve Bypass. ONLY Package 1 and Package 2 ship loose. Mounting is for Package 3.
QHD/QBP 210-635 (Standard)

Quincy offers a standard filter package for all desiccant dryer models 635 and below. Included in this package are two prefilters and an afterfilter to increase the quality of air going to your system.

- Prefilters prevent oil contamination to increase desiccant life time.
- An afterfilter protects the airnet from desiccant dust and network contamination.
- Easy to assemble and maintain. No extra piping and filter connections are required.

Package Filtration

Pre Filter Model QCF

- Type: Polishing Coalescer
- Rating: 0.01 Micron

The factory-selected coalescing prefilter is installed at the dryer inlet. The polishing QCF coalescing prefilter protects the dryer from liquid contamination and includes an electronic condensate drain with element condition indicator. The Aluminum filters feature a push-to-fit element connection design and color coded element end caps. The housings are electrophoretic coated and carry a 10-year warranty.

Pre Filter Model QMF

- Type: Standard/Particulate Coalescer
- Rating: 1 Micron

This prefilter is designated to filter initial contamination up to 1 micron before going through a second phase of filtration to better protect the dryer. The housings of both prefilters are the same and interchangeable.

After Filter Model QPF

- Type: Particulate
- Rating: 5 Micron

To protect downstream equipment from the harmful effects of desiccant dust, Quincy has selected our high-efficiency QPF 5 micron particulate filter. Since the Q-Sorb produces so little dust, this afterfilter will have an extended life expectancy. The housings are configured the same as the prefilter and are interchangeable.
Dedicated Electronic Controls

Standard Electronic Controller for Heatless Dryers 850 & Up

- Sequence annunciator
- Cycle stop- allows dryer to cycle with compressor
- Power on/in operation/regeneration-indicators
- Alarm and warning contacts
- Service warning alarm
- Remote start/stop capability
- Optional demand control, (easy) field demand control retrofit kit
- Nema 4 control panel
- UL/cUL certification
- CAN-BUS communication

Digital Demand Control

- Optional on all models
- Saves energy-regulates purge in direct response to demand
- Adjusts energy consumption to fluctuating operating conditions
- Prolongs desiccant, valve, filter and element life- reduces overall maintenance
- Circuitry is integral to the standard controller- Quick field installation kit available
- High speed, rugged ceramic sensor (NIST Traceable) with sensor warning and alarm
- Digital dewpoint readout, dewpoint warning and alarm, adjustable dewpoint settings (integral in standard controller)

“HMI” Controller

- Standard on all QHP, QBP, and QHD 230-635 dryers
- Sequence annunciator
- Cycle stop-allows dryer to cycle with compressor
- Loaded hours and actual demand control time display
- Fixed cycle time and total hours display
- Cycle counter and weekly timer-set run/stop schedule
- Energy saving calculator and dewpoint trending
- Integrated web server with web interface (LAN connection)
- CAN communication
- Multilevel, security password protection
- Remote stop/start
- Service reminders with service history log
- Event history log
- NEMA 4

Desiccant Dryer Comparison–1050 cfm

<table>
<thead>
<tr>
<th>Model</th>
<th>Purge Flow</th>
<th>Compressor HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>QHD</td>
<td>147 CFM</td>
<td>30 hp</td>
</tr>
<tr>
<td>QHP std.</td>
<td>73.5 CFM</td>
<td>20 hp</td>
</tr>
<tr>
<td>QHP microburst</td>
<td>37 CFM</td>
<td>10 hp</td>
</tr>
</tbody>
</table>

*At $0.10 kWh 24/7 operation microburst SAVES $13,070 per year at full load

Superior Components

Premium Valve Configuration - Five Year Warranty

- High performance valves
- High cycle life
- Designed for low torque
- No maintenance required
- Low pressure drop
- Double acting actuators
- Fail safe operation ensures no disruption of air
- Industry best 5-year warranty

Microburst Regeneration (Patented) Full-Load Energy Saver

The only purge saving option available on the market for full load conditions. This algorithm along with dew point measurements cut purge flows by 50%.

- Includes advance "HMI“ controller
- Available on QHP dryers
- Full load energy savings
- Integral demand control
- Cuts energy consumption by 50%
- Fast payback
- Fully instrumented
- Digital dewpoint readout
- Full purge default mode
QMOD Heatless Desiccant Air Dryers

Features

- Compact footprint saves floor space, fits anywhere
- Point of use, lab or compressor room
- Can be installed in either a vertical or horizontal position
- NPT connections allow easy installation and service access
- Floor mounting brackets provide stability (standard on models 00045 and larger)
- Wall mounting brackets available for models 00008 - 00035

Performance

- Lab and instrument quality compressed air
- Class 1.2.1 standard (-40°F PDP @ 100 PSI)
- Class 1.1.1 capable (-100°F PDP @ 100 PSI)
- Max pressure = 232 PSI
- ISO 8573:1 compliant
- Low delta P - <3 PSI
- CRN approved*

Electronics

- Universal voltage
- 110/220 VAC and 12/24 VDC
- NEMA 3S/ IP65 controller
- Available PC interface software
- Diagnostic alarms

1. Electrophoretic coating protects manifold and filter
2. Polishing prefilter with dual timer, electronic drain
3. Quick change desiccant cartridges with integral afterfilter
4. Diagnostic control center
5. Multiple inlet and outlet ports (00008 through 00035)

*QMOD 8-35 No CRN in Alberta, Canada
*QMOD 45-365 CRN in all Canadian provinces
QMOD Sizing Table

<table>
<thead>
<tr>
<th>Model</th>
<th>Inlet Pipe Size (NPT)</th>
<th>Inlet Flow Rate (SCFM)</th>
<th>Dryer Config.</th>
<th>Dimensions</th>
<th>Weight (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Length (inches)</td>
<td>Width (inches)</td>
</tr>
<tr>
<td>QMOD00008</td>
<td>3/8"</td>
<td>8</td>
<td>Simplex</td>
<td>11.1</td>
<td>3.6</td>
</tr>
<tr>
<td>QMOD00010</td>
<td>3/8"</td>
<td>10</td>
<td>Simplex</td>
<td>11.1</td>
<td>3.6</td>
</tr>
<tr>
<td>QMOD00015</td>
<td>3/8"</td>
<td>15</td>
<td>Simplex</td>
<td>11.1</td>
<td>3.6</td>
</tr>
<tr>
<td>QMOD00025</td>
<td>3/8"</td>
<td>25</td>
<td>Simplex</td>
<td>11.1</td>
<td>3.6</td>
</tr>
<tr>
<td>QMOD00035</td>
<td>3/8"</td>
<td>35</td>
<td>Simplex</td>
<td>11.1</td>
<td>3.6</td>
</tr>
<tr>
<td>QMOD00045</td>
<td>3/4"</td>
<td>45</td>
<td>Simplex</td>
<td>20.5</td>
<td>6.5</td>
</tr>
<tr>
<td>QMOD00055</td>
<td>3/4"</td>
<td>55</td>
<td>Simplex</td>
<td>20.5</td>
<td>6.5</td>
</tr>
<tr>
<td>QMOD00065</td>
<td>3/4"</td>
<td>65</td>
<td>Simplex</td>
<td>20.5</td>
<td>6.5</td>
</tr>
<tr>
<td>QMOD00085</td>
<td>1"</td>
<td>85</td>
<td>Simplex</td>
<td>20.5</td>
<td>6.5</td>
</tr>
<tr>
<td>QMOD00105</td>
<td>1"</td>
<td>105</td>
<td>Simplex</td>
<td>20.5</td>
<td>6.5</td>
</tr>
<tr>
<td>QMOD00135</td>
<td>1 1/4"</td>
<td>135</td>
<td>Simplex</td>
<td>20.5</td>
<td>6.5</td>
</tr>
<tr>
<td>QMOD00175</td>
<td>1 1/4"</td>
<td>175</td>
<td>Simplex</td>
<td>20.5</td>
<td>6.5</td>
</tr>
<tr>
<td>QMOD00215</td>
<td>1 1/2"</td>
<td>215</td>
<td>Duplex</td>
<td>20.5</td>
<td>12.9</td>
</tr>
<tr>
<td>QMOD00275</td>
<td>1 1/2"</td>
<td>275</td>
<td>Duplex</td>
<td>20.5</td>
<td>12.9</td>
</tr>
<tr>
<td>QMOD00365</td>
<td>1 1/2"</td>
<td>365</td>
<td>Duplex</td>
<td>20.5</td>
<td>12.9</td>
</tr>
</tbody>
</table>

Specification

- **Standard Pressure Dewpoint**: -40°F -100°F
- **Minimum Working Pressure**: 58 PSIG
- **Maximum Working Pressure**: 232 PSIG
- **Electronic Controls**: 12VDC - 24VDC, 100VAC - 240VAC
- **Minimum Inlet Temperature**: 35°F
- **Maximum Inlet Temperature**: 122°F
- **Minimum Ambient Temperature**: 41°F

Example: Capacity Correction for a 175 CFM Heatless Dryer Operating at 130 PSIG & 104°F

Corrected Capacity = Required Capacity x Pressure Correction x Temperature Correction

Corrected Capacity = 175 x 1.25 x .93

Corrected Capacity = 203 SCFM

Dryer Required = Required Capacity / Pressure Correction / Temperature Correction

Dryer Required = 175 / 1.25 / .93

Dryer Required = 150 SCFM

Dryer Correction Factors

Inlet Pressure Capacity Correction

<table>
<thead>
<tr>
<th>Inlet PSIG</th>
<th>58</th>
<th>72</th>
<th>87</th>
<th>100</th>
<th>116</th>
<th>130</th>
<th>145</th>
<th>160</th>
<th>174</th>
<th>189</th>
<th>203</th>
<th>218</th>
<th>232</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure Correction</td>
<td>0.62</td>
<td>0.75</td>
<td>0.87</td>
<td>1.0</td>
<td>1.12</td>
<td>1.25</td>
<td>1.37</td>
<td>1.5</td>
<td>1.62</td>
<td>1.75</td>
<td>1.87</td>
<td>2.0</td>
<td>2.12</td>
</tr>
</tbody>
</table>

Inlet Temperature Capacity Correction

<table>
<thead>
<tr>
<th>Inlet temperature (°F)</th>
<th>68</th>
<th>77</th>
<th>86</th>
<th>95</th>
<th>104</th>
<th>113</th>
<th>122</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature correction factor</td>
<td>1.07</td>
<td>1.06</td>
<td>1.04</td>
<td>1.00</td>
<td>0.93</td>
<td>0.78</td>
<td>0.64</td>
</tr>
</tbody>
</table>

Dewpoint Correction

<table>
<thead>
<tr>
<th>Dewpoint (°F)</th>
<th>-40°F</th>
<th>-100°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dewpoint correction factor</td>
<td>1.0</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Note: The temperature and pressure correction factors below should be applied to the above flow rates to suit the application and ensure dryer performance.

All flow rates are based on 100 psig and 95°F at the dryer inlet.

All units provided with prefilter and afterfilter.
QMOD Operation

Quincy QMOD desiccant air dryers purify compressed air by filtering impurities and adsorbing water vapor from a compressed air stream.

To remove and drain liquids, aerosols and mists, the flow of untreated compressed air is initially directed through a 0.01PPM polishing prefilter. The filtered compressed air is then directed up through one of two chambers that hold specially designed purification cartridges. Each cartridge contains a bed of high performance desiccant and a particulate afterfilter. The desiccant material adsorbs the remaining water vapor and the integral afterfilter finishes the process by collecting any remaining particulate matter. The compressed air is then delivered to the distribution system, or point of use, as a clean, dry utility.

The QMOD dryer offers dew point performance of either -40°F PDP or -100°F PDP.

QMOD Diagnostic Control Center

- Service due - 12,000 hour intervals
- Solenoid fault
- Drain valve fault
- Controller fault
- Low voltage
- Service warning -500 hours before service is due
- Power on/off
- Right chamber purging
- Right chamber repressurizing
- Left chamber purging
- Left chamber repressurizing

- Adjustable alarm settings allow flexibility*
- RS 232 communication for data collection via PC *
- Running hours display*
- Dry contact for remote alarm

The Importance of Quality Air

After air is compressed, it contains oil, solid particles, and water vapors. Combining these three contaminants can form an abrasive, oily sludge that can sometimes be acidic. If the air is not properly treated, this mix of contaminants will enter your compressed air system causing corrosion in pipes, damage to pneumatic tools, and a compromised end product. By adding a dryer and filters to your system, you can protect your compressed air system and ensure a contaminant free, uncompromised final product.
Specifications and Engineering Data

Heatless

<table>
<thead>
<tr>
<th>Model</th>
<th>CFM @ 100 PSIG</th>
<th>Purge CFM</th>
<th>Pressure Dewpoint Deg F</th>
<th>Voltage</th>
<th>Av. Power Consumption kW</th>
<th>Air Conn. In/Out</th>
<th>Q-Sorb lbs./Tower</th>
<th>Dimensions *Basic Dryer</th>
<th>*Approx Weight (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Length (inches)</td>
<td>Width (inches)</td>
</tr>
<tr>
<td>QHD-230</td>
<td>230</td>
<td>41</td>
<td>-40</td>
<td>115/1/60</td>
<td>.063</td>
<td>1.5 * NPT</td>
<td>155</td>
<td>37.1</td>
<td>30.3</td>
</tr>
<tr>
<td>QHD-320</td>
<td>320</td>
<td>58</td>
<td>-40</td>
<td>115/1/60</td>
<td>.063</td>
<td>1.5 * NPT</td>
<td>188</td>
<td>42.9</td>
<td>35.4</td>
</tr>
<tr>
<td>QHD-390</td>
<td>390</td>
<td>70</td>
<td>-40</td>
<td>115/1/60</td>
<td>.063</td>
<td>1.5 * NPT</td>
<td>221</td>
<td>42.9</td>
<td>35.3</td>
</tr>
<tr>
<td>QHD-530</td>
<td>530</td>
<td>95</td>
<td>-40</td>
<td>115/1/60</td>
<td>.063</td>
<td>2.0 * NPT</td>
<td>287</td>
<td>43.5</td>
<td>39.9</td>
</tr>
<tr>
<td>QHD-635</td>
<td>635</td>
<td>114</td>
<td>-40</td>
<td>115/1/60</td>
<td>.063</td>
<td>2.0 * NPT</td>
<td>331</td>
<td>46.2</td>
<td>42.1</td>
</tr>
<tr>
<td>QHD-850</td>
<td>850</td>
<td>119</td>
<td>-40</td>
<td>115/1/60</td>
<td>.01</td>
<td>3"R.F.Flange</td>
<td>510</td>
<td>76.3</td>
<td>41.0</td>
</tr>
<tr>
<td>QHP-1050</td>
<td>1050</td>
<td>147</td>
<td>-40</td>
<td>115/1/60</td>
<td>.01</td>
<td>3"R.F.Flange</td>
<td>618</td>
<td>76.3</td>
<td>41.0</td>
</tr>
<tr>
<td>QHP-1220</td>
<td>1220</td>
<td>171</td>
<td>-40</td>
<td>115/1/60</td>
<td>.01</td>
<td>3"R.F.Flange</td>
<td>727</td>
<td>82.4</td>
<td>41.0</td>
</tr>
<tr>
<td>QHP-1700</td>
<td>1700</td>
<td>238</td>
<td>-40</td>
<td>115/1/60</td>
<td>.01</td>
<td>4"R.F.Flange</td>
<td>1018</td>
<td>97.0</td>
<td>46.0</td>
</tr>
<tr>
<td>QHP-2000</td>
<td>2000</td>
<td>280</td>
<td>-40</td>
<td>115/1/60</td>
<td>.01</td>
<td>4"R.F.Flange</td>
<td>1237</td>
<td>97.0</td>
<td>46.0</td>
</tr>
<tr>
<td>QHP-2600</td>
<td>2600</td>
<td>364</td>
<td>-40</td>
<td>115/1/60</td>
<td>.01</td>
<td>4"R.F.Flange</td>
<td>1500</td>
<td>96.5</td>
<td>46.0</td>
</tr>
<tr>
<td>QHP-3000</td>
<td>3000</td>
<td>420</td>
<td>-40</td>
<td>115/1/60</td>
<td>.01</td>
<td>6"R.F.Flange</td>
<td>1817</td>
<td>104.0</td>
<td>63.3</td>
</tr>
<tr>
<td>QHP-3400</td>
<td>3400</td>
<td>476</td>
<td>-40</td>
<td>115/1/60</td>
<td>.01</td>
<td>6"R.F.Flange</td>
<td>2035</td>
<td>104.0</td>
<td>63.3</td>
</tr>
</tbody>
</table>

Heated Purge

<table>
<thead>
<tr>
<th>Model</th>
<th>CFM</th>
<th>Purge CFM</th>
<th>Pressure Dewpoint Deg F</th>
<th>Voltage</th>
<th>Av. Power Consumption kW</th>
<th>Air Conn. In/Out</th>
<th>Q-Sorb lbs./Tower</th>
<th>Dimensions *Basic Dryer</th>
<th>*Approx Weight (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Length (inches)</td>
<td>Width (inches)</td>
</tr>
<tr>
<td>QBP-210</td>
<td>210</td>
<td>4.25</td>
<td>0.95</td>
<td>460/3/60</td>
<td>3.0</td>
<td>1.5 * NPT</td>
<td>95</td>
<td>51.77</td>
<td>33</td>
</tr>
<tr>
<td>QBP-320</td>
<td>320</td>
<td>4.25</td>
<td>0.95</td>
<td>460/3/60</td>
<td>3.0</td>
<td>1.5 * NPT</td>
<td>165</td>
<td>55.31</td>
<td>38</td>
</tr>
<tr>
<td>QBP-390</td>
<td>390</td>
<td>6.25</td>
<td>0.95</td>
<td>460/3/60</td>
<td>5.0</td>
<td>1.5 * NPT</td>
<td>174</td>
<td>53.5</td>
<td>35.3</td>
</tr>
<tr>
<td>QBP-530</td>
<td>530</td>
<td>7.45</td>
<td>2.05</td>
<td>460/3/60</td>
<td>5.5</td>
<td>2.0 * NPT</td>
<td>264</td>
<td>58.25</td>
<td>39</td>
</tr>
<tr>
<td>QBP-635</td>
<td>635</td>
<td>7.45</td>
<td>2.05</td>
<td>460/3/60</td>
<td>5.5</td>
<td>2.0 * NPT</td>
<td>330</td>
<td>61.38</td>
<td>43</td>
</tr>
<tr>
<td>QBP-850</td>
<td>850</td>
<td>12</td>
<td>0.9</td>
<td>460/3/60</td>
<td>12.9</td>
<td>3"R.F.Flange</td>
<td>510</td>
<td>76.3</td>
<td>49.3</td>
</tr>
<tr>
<td>QBP-1050</td>
<td>1050</td>
<td>12</td>
<td>2.1</td>
<td>460/3/60</td>
<td>14.1</td>
<td>3"R.F.Flange</td>
<td>630</td>
<td>76.3</td>
<td>49.3</td>
</tr>
<tr>
<td>QBP-1220</td>
<td>1220</td>
<td>18</td>
<td>2.6</td>
<td>460/3/60</td>
<td>20.6</td>
<td>3"R.F.Flange</td>
<td>732</td>
<td>82.4</td>
<td>49.3</td>
</tr>
<tr>
<td>QBP-1700</td>
<td>1700</td>
<td>27</td>
<td>4.6</td>
<td>460/3/60</td>
<td>31.6</td>
<td>4"R.F.Flange</td>
<td>1020</td>
<td>97.0</td>
<td>56.5</td>
</tr>
<tr>
<td>QBP-2000</td>
<td>2000</td>
<td>27</td>
<td>5.5</td>
<td>460/3/60</td>
<td>32.5</td>
<td>4"R.F.Flange</td>
<td>1260</td>
<td>97.0</td>
<td>56.5</td>
</tr>
<tr>
<td>QBP-2600</td>
<td>2600</td>
<td>36</td>
<td>6.3</td>
<td>460/3/60</td>
<td>42.3</td>
<td>4"R.F.Flange</td>
<td>1620</td>
<td>96.5</td>
<td>56.5</td>
</tr>
</tbody>
</table>

Blower Purge
Inlet Pressure Capacity Correction

<table>
<thead>
<tr>
<th>Inlet PSIG</th>
<th>QHD 230-635</th>
<th>QHD 230-635 (210 PSI Unit)</th>
<th>QHD 850-3400</th>
<th>QHP 850-3400</th>
<th>QBP 210-635</th>
<th>QBP 850-2600</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0.35</td>
<td>NA</td>
<td>0.56</td>
<td>0.56</td>
<td>0.56</td>
<td>0.56</td>
</tr>
<tr>
<td>60</td>
<td>0.51</td>
<td>NA</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
</tr>
<tr>
<td>70</td>
<td>0.65</td>
<td>NA</td>
<td>0.74</td>
<td>0.74</td>
<td>0.74</td>
<td>0.74</td>
</tr>
<tr>
<td>80</td>
<td>0.77</td>
<td>NA</td>
<td>0.83</td>
<td>0.83</td>
<td>0.82</td>
<td>0.83</td>
</tr>
<tr>
<td>90</td>
<td>0.87</td>
<td>NA</td>
<td>0.91</td>
<td>0.91</td>
<td>0.9</td>
<td>0.91</td>
</tr>
<tr>
<td>100</td>
<td>0.97</td>
<td>NA</td>
<td>1.0</td>
<td>1.0</td>
<td>0.99</td>
<td>1.0</td>
</tr>
<tr>
<td>110</td>
<td>1.05</td>
<td>NA</td>
<td>1.09</td>
<td>1.09</td>
<td>1.07</td>
<td>1.09</td>
</tr>
<tr>
<td>120</td>
<td>1.13</td>
<td>NA</td>
<td>1.18</td>
<td>1.18</td>
<td>1.16</td>
<td>1.18</td>
</tr>
<tr>
<td>130</td>
<td>1.2</td>
<td>NA</td>
<td>1.27</td>
<td>1.27</td>
<td>1.24</td>
<td>1.27</td>
</tr>
<tr>
<td>140</td>
<td>1.27</td>
<td>NA</td>
<td>1.37</td>
<td>1.37</td>
<td>1.33</td>
<td>1.37</td>
</tr>
<tr>
<td>150</td>
<td>1.33</td>
<td>NA</td>
<td>1.43</td>
<td>1.43</td>
<td>1.41</td>
<td>1.43</td>
</tr>
<tr>
<td>160</td>
<td>1.38</td>
<td>0.88</td>
<td>NA</td>
<td>NA</td>
<td>1.5</td>
<td>NA</td>
</tr>
<tr>
<td>170</td>
<td>NA</td>
<td>0.94</td>
<td>NA</td>
<td>NA</td>
<td>1.58</td>
<td>NA</td>
</tr>
<tr>
<td>180</td>
<td>NA</td>
<td>0.99</td>
<td>NA</td>
<td>NA</td>
<td>1.67</td>
<td>NA</td>
</tr>
<tr>
<td>190</td>
<td>NA</td>
<td>1.05</td>
<td>NA</td>
<td>NA</td>
<td>1.75</td>
<td>NA</td>
</tr>
<tr>
<td>200</td>
<td>NA</td>
<td>1.11</td>
<td>NA</td>
<td>NA</td>
<td>1.84</td>
<td>NA</td>
</tr>
<tr>
<td>210</td>
<td>NA</td>
<td>1.16</td>
<td>NA</td>
<td>NA</td>
<td>1.92</td>
<td>NA</td>
</tr>
</tbody>
</table>

Inlet Temperature Capacity Correction

<table>
<thead>
<tr>
<th>Inlet Temp</th>
<th>QHD 230-635</th>
<th>QHD 230-635 (210 PSI Unit)</th>
<th>QHD 850-3400</th>
<th>QHP 850-3400</th>
<th>QBP 210-635</th>
<th>QBP 850-2600</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>95</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>100</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>105</td>
<td>0.81</td>
<td>0.81</td>
<td>0.85</td>
<td>0.85</td>
<td>0.73</td>
<td>0.85</td>
</tr>
<tr>
<td>110</td>
<td>0.76</td>
<td>0.76</td>
<td>0.74</td>
<td>0.74</td>
<td>0.66</td>
<td>0.74</td>
</tr>
<tr>
<td>115</td>
<td>0.67</td>
<td>0.67</td>
<td>0.64</td>
<td>0.64</td>
<td>0.59</td>
<td>0.64</td>
</tr>
<tr>
<td>120</td>
<td>0.58</td>
<td>0.58</td>
<td>0.55</td>
<td>0.55</td>
<td>0.52</td>
<td>0.55</td>
</tr>
</tbody>
</table>

Example: Capacity Correction for a 1000 CFM Heated Purge Dryer Operating at 120 PSIG & 110°F

Corrected Capacity = (Required Capacity) x (Pressure Correction) x (Temperature Correction)

1000 x 1.18 x 0.74
873 SCFM

Dryer Required = (Required Capacity) / (Pressure Correction) / (Temperature Correction)

1000 / 1.18 / 0.74
1145 SCFM

Q-Sorb Enhanced Desiccant

Quincy’s exclusive Q-Sorb desiccant is the first significant improvement in activated alumina in many years.

- Enhanced formula
- Improves adsorption
- Lower pressure drop
- Higher crush strength
- Reduced channeling
- Less dusting
- Direct replacement
- More efficient
- Longer life
Compressed Air Systems Best Practice

QWS Moisture Separator
QPF Particulate/Coarse Coalescer
QMF STD 0.1 PPM Coalescer, 1 Micron
QCF Polishing 0.01 PPM Coalescer
QXNT Xtra 0.001 PPM Coalescer
QAF Activated Carbon Absorber
HTDT High Temperature, 1 Micron
QPDQ Non-Cycling Refrigerated Dryer
QED Cycling Refrigerated Dryer
QMDQ Modular Heatless Dryer
QHD Industrial Heatless Dryer
QHP Heated Purge Dryer
QBP Blower Purge Dryer
QHT High Temp. Refrigerated Dryer
AC Aftercooler
DP Drain Point

Quincy Condensate Purifier

Air Quality Classification
ISO 8573.1

<table>
<thead>
<tr>
<th>Solids</th>
<th>Moisture</th>
<th>Oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micron</td>
<td>ISO</td>
<td>PPM</td>
</tr>
<tr>
<td>0.01</td>
<td>1</td>
<td>+38°F</td>
</tr>
<tr>
<td>0.01</td>
<td>1</td>
<td>+38°F</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>-10°F</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>-40°F</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>-40°F</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>-40°F</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>+50°F</td>
</tr>
<tr>
<td>0.01</td>
<td>1</td>
<td>+50°F</td>
</tr>
</tbody>
</table>

Approximate Liquid Removal
100 CFM, 100 psig, 80°F, 4000 hrs./yr., 2 PPM

<table>
<thead>
<tr>
<th>Drain Point</th>
<th>Gallons per Year</th>
<th>Drain Point</th>
<th>Gallons per Year</th>
<th>Drain Point</th>
<th>Gallons per Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3000</td>
<td>2</td>
<td>3000</td>
<td>3</td>
<td>3000</td>
</tr>
<tr>
<td>2</td>
<td>2000</td>
<td>6</td>
<td>2000</td>
<td>7</td>
<td>2000</td>
</tr>
<tr>
<td>3</td>
<td>3000</td>
<td>10</td>
<td>3000</td>
<td>11</td>
<td>3000</td>
</tr>
<tr>
<td>4</td>
<td>1000</td>
<td></td>
<td>1000</td>
<td></td>
<td>1200</td>
</tr>
</tbody>
</table>

©2017 Quincy Compressor. All rights reserved. Printed in U.S.A. (QD-003 11/18)